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Abstract. This paper aims to develop an efficient and safe navigation 
framework under relaxable constraints. However, constraint-based navi-
gation planning is challenging since the structure of the navigation envi-
ronment and the existence of relaxable constraints are difficult to predict 
in advance. Furthermore, constraint relaxation priority varies depending 
on operation and task conditions. To address this, we introduce a novel 
reactive constraint-relaxation-and-planning method that autonomously 
identifies a constrained region to violate and redetermines a navigation 
plan that balances safety and efficiency in real time. We validate our app-
roach through both quantitative and qualitative analysis using CARLA
simulations, achieving a navigation success rate of 95% and reducing the
navigation distance in the constraint region by 60% compared to scenar-
ios with no constraint relaxation.

Keywords: Safety-aware navigation · Spatial constraints · Constraint
relaxation

1 Introduction 

Advances in navigation platforms have significantly increased the prevalence of 
robots with enhanced mobility in urban environments [1– 4]. The goal is to build 
an urban navigation planning framework that enables a robot to find the human-
like safe but efficient path in complex environments. However, the diverse nature 
of urban areas raises the c hallenge of selecting a safe path while minimizing
navigation costs since the environment structure is not known in advance.

As a solution, researchers often investigate reactive task-and-motion planning 
(TAMP) methods that find a task-wise complete and path-wise optimal plan in 
an iterative manner. For example, Li et al. introduce a reactive TAMP framework
that leverages linear temporal logic (LTL) to find a sequence of action commands
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Fig. 1. Overall framework of the constraint relaxation-based n avigation method.

satisfying logical specifications, given environmental changes [5]. However, real-
world applications often fail to find a c omplete solution without passing through
dangerous regions.

To resolve this issue, conventional studies predefine the priorities of con-
straint regions and suggested methods to reach destinations by selectiv ely vio-
lating lower-priority constraints in unavoidable situations [6– 10]. However, the 
prioritization of constraints is nontrivial, requiring a comprehensive understand-
ing o f both the environment and task goals.

To address these issues, we introduce a novel reactive constraint-relaxation-
and-planning method that autonomously identifies a constrained region to tem-
porally relax, enabling online replanning that balances safety and efficiency
online. Our method builds on an LTL-based TAMP framework [5] to find a 
complete and optimal path within the current map. We improve the method 
by converting constrained regions into traversable areas, selecting the region 
with the highest relaxation score, when a constrained area significantly impedes
efficient goal reaching, as illustrated in Fig. 1. Further, we propose a novel com-
posite relaxation score based on distance and commonsense measures derived 
from large-scale language dataset. This score guides the generation of a relaxed 
path plan to enable effective, human-like navigation. We evaluate the safet y and
completeness of the proposed navigation method both qualitatively and quanti-
tatively using an open-source simulator for autonomous urban driving.

2 Related Work 

2.1 Path Planning-Based Safety-Aware Navigation 

Traditional planning methods often utilize cost-based search algorithms (e.g., 
Dijkstra or A* algorithms) to safely navigate around areas. However, accurately 
modeling such costs is challenging, particulary when environmental information 
is sparse. This significanly lowers the completeness of planning approach in real 
world. Alternatively, recent studies often estimate the trave rsability of regions,
including risky areas (e.g., stairs, narrow aisles, and grass), to enable more robust
path planning. To assess traversability, these studies leverage various sensor
data [11– 13] or adopt vision-based self-supervised learning techniques [14,15].
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Fig. 2. Path planning block diagram. Given semantic map and linear temporal logic 
(LTL) inputs, the high-level planner devises a task plan, and t he low-level path and
motion planner generates a velocity command.

However, the difficulty in intuitively understanding the computed traversability 
limits its application to urban environments with frequent unpredicted behavior. 
In addition, tra versable areas may require additional safety consideration based
on social conventions.

In this paper, we also evaluate the navigation risk of constrained areas by a 
commonsense-based score to consider semantic safeties as well as physical risks,
and express the evaluation result in formal language as a task command.

2.2 Task Planning-Based Safety-Aware Navigation 

Task planning-based research handles hazardous areas by defining constraints 
using high-level formal language for in tuitive representation and constraint
avoidance [16– 19]. If necessary, violation or dynamic modification of formal 
language-given constraints can help to achieve the task goal [20]. 

First, the minimum constraint violation method finds a path that violates 
as few high-priority constraints as possible. This method defines the constraint
priority as a dictionary expression [9,10], cost [7], or hard-soft constraint [6, 8]  to  
find the optimal path that violates the least number of constraints. As defining 
constraint prioritization requires prior environmen tal understanding, existing
work utilizes predefined constraints and priorities from various regulations.

Next, constraint modification methods minimally adjusts constraints at the 
task level to generate a feasible plan by considering combinations o f constraints
to find a new feasible constraint set that enables the execution [21– 23]. Unlike 
violation, constraint modification does not require the prioritization of con-
straints to be defined in advance, but instead requires a computationally inten-
sive combinatorial consideration of constraints.

In this paper, we take the advantage of formal language to define constraints, 
and propose a reactive constraint-relaxation methodology that relaxes constraint 
regions by modifying the formal language-given task command. We evaluate the
constraint regions using distance-based and commonsense-based scores.

3 Path Planning Methodology 

We employ a path planning method to obtain movement commands that satisfy 
sequential tasks and constraints, as illustrated in Fig. 2. This method proceeds 
through three stages: (1) semantic map and linear temporal logic (LTL) input,
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(2) their compression to transition system (TS) and Büchi automaton (BA), a nd
(3) product automaton (PA)-based path planning.

3.1 Inputs 

Semantic Maps: A semantic map represents a meaningful structure and fea-
ture of the environment recognizing ground labels and obstacles from sensors. 
The map also depicts areas in which constraint relaxation occurs according to
user commands.

Linear Temporal Logic (LTL): LTL is a logic that models time as an 
infinitely expandable sequence of states, and is used in this paper to express 
sequential tasks and constraints, with formula syntax as:

ϕ = π | ¬ϕ | (ϕ1||ϕ2) | Xϕ | (ϕ1Uϕ2), (1) 

where π ∈ U is an atomic proposition, and temporal operators & (conjunction) 
and F (finally) are derived from logic operators [16]. 

3.2 Compression Graphs 

Transition System (TS): As in Definition 1 [ 5], transition system is a graph 
that abstracts the semantic map’s various regions, their i nterconnections, and
the robot’s position among them.

Definition 1. (Transition System) The transition system is defined as TS = 
(S, s0,  A,  δt, Π,  L),  where  S is a finite state set (s ∈ S), s0 the initial state, A 
the action space, δt : S × A → S the transition between states, Π the atomic 
proposition set, and L : S → 2 Π the labeling function for states where the atomic
proposition is true (details are in [5]). 

Fig. 3. Transition system formulation process. A region growing algorithms clusters 
regions with identical lab els. A transition system then represents the connections.

As in Fig. 3, a region growing algorithms clusters regions with identical labels. 
Initially positioned in region r5 with state s0, the robot triggers action A upon 
transitioning between regions. The labeling function L ensures the state truth
of the robot’s current region.
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Büchi Automaton (BA): The Büchi automaton (Definition 2 [ 5]) repre-
sents the sequential tasks and constraints of linear temporal logic as a graph. A 
robotic system determines whether its given commands are satisfied with Büchi
automata [24]. 

Definition 2. (Büchi Automaton) BA = (Qb,  qb,0, Σ,  δb,  Fb),  where  Qb is 
the finite state set(qb ∈ Qb), qb,0 the initial state, Σ  =  2Π the LTL symbol set, 
δb : Qb × Σ → 2Qb the transition between s tates, and Fb ⊆ Qb the accept state
set (details are in [5]). 

Traversal of the regions associated with an edge allows movement between 
nodes, where an edge labeled with 1 denotes all possible regions. Failure to
traverse an appropriate region results in a constraint violation of the Büchi
automaton.

3.3 Planning 

Product Automaton (PA): The product automaton is a composite graph 
formed from the transition system and t he Büchi automaton, defined as a tuple
in Definition 3 [ 5]. 

Definition 3. (Product Automaton) PA = TS × BA = (Qp,  qp,0, Σ,  δp,  Fp), 
Qp = S × Qb(qp =  (s, qb) ∈ Qp), where qp,0 =  (s0,  qb,0) is the initial state, 
Σ  =  2Π the LTL symbol set, δp : Qp → Q p the connectivity between states, and
Fp ⊆ Qp the set of accept states (details are in [5]). 

The combination of the transition system and the Büchi automaton allows 
simultaneous consideration of the environment and tasks. Through graph explo-
ration from the initial state (s0,  qb,0)  to  (sF ,  qb,F ) where qb,F ∈ F b, the robot
identifies a task plan ξ = {(si, qb,i)}i=0,1,...,F that satisfies the command ϕ.

Path Planning: Through path planning, the robot executes its given task for 
each region or goal. First, the robot creates a cost map by inflating all regions 
and obstacles o n the semantic map to the robot size. The robot then employs a
global search algorithm [25] to plan the path from the robot’s current position to 
the goal, and a local search algorithm [26] to traverse the path while outputting 
velocity commands for avoiding constrained regions and obstacles.

4 Reactive Constraint Relaxation Methodology 

4.1 Overview 

The path planning method includes a reactive constraint-relaxation process, indi-
cated by the red line in Fig. 4. The method proceeds through three stages: (1) 
assessing task difficulty, (2) scoring constraint regions, and (3) relaxing con-
straints and re-planning.



224 J. Kim et al.

Fig. 4. Reactive constraint relaxation methodology blo ck diagram.

4.2 Constraint Relaxation Threshold 

Constraint relaxation occurs when goal-reaching is difficult under the existing 
constraints. The method determines task difficulty by whether the difference 
between the current distance d robot to the goal and the minimum Manhattan
distance to the goal dmin exceeds a threshold,

drobot >  dmin + threshold. (2) 

4.3 Score Evaluation 
Distance: We use the Manhattan distance dconstraint from the constraint region 
center to the goal to account for urban en vironment features such as buildings
and roads. As in Eq. (3), the distance score Sd, 

Sd =  1  − dconstraint
2l

, (3) 

has a value between 0 and 1 based on dconstraint and the map size l. The distance 
score is proportional to the negative of the distance dconstraint, indicating how
useful it was in reaching the goal.

Commonsense Knowledge: We assign commonsense-based scores to con-
straints using word similarities from t he large-scale language dataset ConceptNet
Numberbatch [27], employed by former studies for commonsense scoring [28]. 

After finding the word similarity between constraint labels and the roads, we 
normalize the similarity values. As in Eq. (4), the commonsense score Sc, 

Sc = wsidewalk − w road + 1
2

. (4) 

has a value between 0 and 1 based on the word similarity wsidewalk to sidewalks 
and wroad to roads. The commonsense scores for crosswalks, grass, and roads
were 0.59, 0.44, and 0.20, respectively.

4.4 Constraint Relaxation Method 

We relax the constraint with the highest score to establish a new path plan 
through the constrained region. After scoring the constraints with Sd and Sc,
we find the weighted sum Ss,
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Ss = w ∗ Sd + Sc. (5) 

We modify the LTL to allow passage through the constraint region with the high-
est weighted sum and reconstruct the Büchi automaton and product automaton 
according to the modified LTL. Finally, based on the reconstructed product
automaton, we perform graph exploration to establish a new task plan that
passes through the relaxed constraint region.

Fig. 5. Evaluation environments. (a) Qualitative evaluation environment with cross-
walk, road, and lawn constraints. (b) Quantitative evaluation village environment . (c)
Quantitative evaluation downtown environment.

5 Performance Evaluation 

5.1 Experiment Settings 

Simulation Environment: As in Fig. 5, we conducted qualitative and quan-
titative evaluations for a navigation task in a 3D CARLA simulation environ-
ment [29]. The initial constraint was to travel on sidewalks only for all evaluation
settings.



226 J. Kim et al.

Fig. 6. Comparison results with (a): other constraint-relaxation methods a nd (b): scor-
ing methods.

Navigation System: We evaluated the reactive constraint-relaxation method’s 
performance using a pedestrian agent with the CARLA simulator. The agent 
used semantic LiDAR to acquire a semantic point cloud for the surrounding 
environment, then classified the ground in to four labels: sidewalk, road, cross-
walk, and grass. The agent then created a combined map from the semantic and
metric maps.

Reactive Constraint-Relaxation Method Parameters: We set the thresh-
old value for Eq. (2) to 10 m, and the constraint score weight w to 3.887, indi-
cating that the grass constraint was to b e relaxed if no crosswalks are within
30 m of the agent.

5.2 Qualitative Evaluation 

Given the command to travel from the apartment to the church along the side-
walk, the reactive constraint-relaxation method relaxed the crosswalk constraint
4 times and the grass constraint once. (Video link: https://youtu.be/Gpro85V-
zBk)

https://youtu.be/Gpro85V-zBk
https://youtu.be/Gpro85V-zBk
https://youtu.be/Gpro85V-zBk
https://youtu.be/Gpro85V-zBk
https://youtu.be/Gpro85V-zBk
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Table 1. Quantitative evaluation results. The best and second-to-best results are in 
red and blue, respectively.

Env. Method Success Constraint Violation Distance (m)

Rate (%) Road Crosswalk Grass Total 
Village Random relaxation 91 66.43 18.46 85.05 169.94 

Full relaxation 96 33.27 3.12 72.22 108.62 
Zero relaxation 10 0.01 0.00 0.08 0.09 
Reactive relaxation (Ours) 95 12.53 22.81 76.15 111.49 

Downtown Random relaxation 90 127.93 26.68 - 154.61 
Full relaxation 95 63.06 4.24 - 67.30 
Zero relaxation 22 0.00 0.00 - 0.00 
Reactive relaxation (Ours) 95 20.10 41.85 - 61.94 

Comparisons: The reactive constraint-relaxation method was compared with 
zero-relaxation and full-relaxation methods in Fig. 6. While the zero-relaxation 
method failed to reach the goal and the full-relaxation method took a dangerous 
road-crossing path, our method reached the goal by relaxing safe constraints 
such as crosswalks and grass. Similarly, distance-only scoring took a dangerous 
road-crossing path and commonsense-only scoring failed to find constraints to
relax to reach the goal, indicating both distance and commonsense scores must
be considered when relaxing constraints.

5.3 Quantitative Evaluation 

The results of the quantitative evaluation are shown in Table 1. 

Comparisons: Figure 7 compares the navigation success rate and the dis-
tance traveled in constraint-violated areas for the reactive constraint-relaxation 
method with those of random-relaxation and full-relaxation methods. In Fig. 7-
(b), the left-hand chart graphs the distance for all violated constraints, while 
the right-hand chart graphs the distance for violated road constraints only.

While most driving tasks failed without constraint-relaxation, the reactive 
constraint-relaxation method achieved similar success rates to full relaxation. 
Although the constraint violation distances for all constraints were similar for the 
reactive constraint-relaxation method and full-relaxation method, our method 
decreased the violation distance for roads by over 60%. These results indicate
that reactive constraint-relaxation is necessary for navigation completeness and
safety.
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Fig. 7. Comparison results for (a): navigation success rate and (b): constraint violation
distance.

6 Conclusion 

We introduced a novel urban navigation approach that reactively relaxes con-
strained regions for efficient and safe navigation. Our method shows a navigation 
success rate of 95% for multiple simulation environments. In addition, compared 
to a full-relaxation method, our method traveled 60% less distance on roads,
which are semantically the most dangerous constraint to relax.

Lastly, we seek to expand the current method with various data-driven 
models to autonomously define constrain ts, leveraging inverse constraint learn-
ing [30,31] and large language models [32]. Further, we plan to incorporate 
natural-language based safety space indicators [33] and conduct real world eval-
uations. 

Acknowledgements. This research was supported in part by the MSIT (Ministry of 
Science and ICT), Korea, under the ITRC (Information Technology Research Center) 
support program (IITP-2024-RS-2024-00437102) supervised by the IITP (Institute for
Information & Communications Technology Planning & Evaluation) and in part by
the KAIST Convergence Research Institute Operation Program.



Reactive Constraint Relaxation 229

References 

1. Arkin, J., et al.: Multimodal estimation and communication of latent semantic 
knowledge for robust execution of robot instructions. Int. J. Robot. Res. 39(10–
11), 1279–1304 (2020)

2. Howard, T., et al.: An intelligence architecture for grounded language communi-
cation with field robots. Field Robotics (2022)

3. Kim, D., Kim, J., Cho, M., Park, D.: Natural language-guided semantic navigation 
using scene graph. In: Jo, J., et al. Robot In telligence Technology and Applications
7. RiTA 2022. LNNS, vol. 642, pp. 148–156. Springer, Cham (2022). https://doi. 
org/10.1007/978-3-031-26889-2 14 

4. Kim, D., Kim, Y., Jang, J., Song, M., Choi, W., Park, D.: SGGNET 2: speech-
scene graph grounding network for speech-guided navigation. In: Proceedings of 
the International Conference on Robot and Human Interactive Communication
(RO-MAN), pp. 1648–1654. IEEE (2023)

5. Li, S., Park, D., Sung, Y., Shah, J.A., Roy, N.: Reactive task and motion plan-
ning under temporal logic specifications. In: P roceedings of the IEEE International
Conference on Robotics and Automation (ICRA), pp. 12618–12624 (2021)

6. Rahmani, H., O’Kane, J.M.: What to do when you can’t do it all: temporal logic 
planning with soft temporal logic constraints. In: Proceedings of the IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS) (2020)

7. Vasile, C.I., Tumova, J., Karaman, S., Belta, C., Rus, D.: Minimum-violation 
SCLTL motion planning for mobility-on-demand. In: Proceedings of the IEEE
International Conference on Robotics and Automation (ICRA) (2017)

8. Lahijanian, M., Maly, M.R., Fried, D., Kavraki, L.E., Kress-Gazit, H., Vardi, M.Y.: 
Iterative temporal planning in uncertain environmen ts with partial satisfaction
guarantees. Trans. Robot. 32(3), 583–599 (2016)
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